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ABSTRACT

The coupled diffusion equations recently proposed for concentrated hard-sphere

suspensions of interacting Brownian particles, the nonlinear deterministic diffusion

equation with the self-diffusion coefficient D S ( Φ ( x , t ) )  for the average local volume

fraction Φ ( x , t )  and the linear stochastic diffusion equation with D S ( Φ ( x , t ) )  for the

density fluctuations δ n ( x , t ) , are numerically solved under a spatially inhomogeneous,

nonequilibrium initial state. Thus, in a supercooled region where φ β # φ < φ g , the slow

evolution of the cluster-like glassy domains with Φ ( x , t ) $ φ g  and the slow relaxation of

the nonequilibrium density fluctuations are shown to be caused by the dynamic

singularity of the self-diffusion coefficient, D S ( Φ ( x , t ) ) - ( 1 − Φ ( x , t ) / φ g ) 
2 , where φ  is a

particle volume fraction, φ g = ( 4 / 3 ) 3 / ( 7 ln3 − 8 ln2 + 2 )  the colloidal glass transition

volume  fraction, and φ β  the crossover volume fraction.

KEY WORDS: crossover volume fraction; dynamic singularity; irregularly shaped

glassy domain; slow dynamics; spatial inhomogeneities; supercooled colloidal fluid.
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1. INTRODUCTION

In this paper we study the nonequilibrium effect on the slow dynamics of

concentrated hard-sphere suspensions near φ g . Many attempts to understand the

dynamics of colloidal suspensions approaching the glass transition have been made by

employing the mode-coupling theory (MCT) [1, 2] for the dynamics of supercooled

fluids. Hence much of the recent experimental studies [3, 4] of slow relaxation in

colloidal fluids have been designed around the predictions of MCT. Recently, the model

equations described below have been shown asymptotically [5], analytically [6] and

numerically [7] to exhibit a number of the characteristic features of slow relaxation of a

colloidal fluid [8]. These include a divergence of relaxation times at φ g  and a two-step

relaxation of the self-intermediate scattering function with time. Although the results

similar to those obtained by MCT have been found, the basic standpoints in two theories

are quite different. First, MCT has been applied to equilibrium systems where the average

number density n ( x , t )  becomes constant n 0  in space and time, that is,

Φ ( x , t ) = ( 4 π a 3 
0 / 3 ) n ( x , t )  reaches the equilibrium volume fraction φ = 4 π a 3 

0 n 0 / 3 , where

a 0  is the particle radius. On the other hand, the present theory deals with a spatially

inhomogeneous, nonequilibrium system, which obeys the nonlinear deterministic

diffusion equation for Φ ( x , t ) . This is because most experimental measurements near φ g 

are done in quenched metastable fluid states where equilibration of a colloidal fluid is

nearly impossible on laboratory time scales. Secondly, MCT assumes that the density

fluctuations δ n ( x , t )  around n 0  obey the nonlinear stochastic equations. On the other

hand, the present theory starts with the linear stochastic diffusion equation for the density

fluctuations δ n ( x , t )  around n ( x , t ) . This is because the density fluctuations would be
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small compared to the causal part n ( x , t )  since the glass transition seems not to be a

critical phenomenon. In fact, there is no correlation length diverging at the glass transition

point. Hence the glass transition seems to be dynamic in origin in contrast to critical

phenomena. Finally, MCT contains two parameters, the volume fraction φ , and a

microscopic time scale t 0  which is treated as a free fit parameter. On the other hand, the

present theory contains two parameters, φ , and the initial number density n ( x , 0 ) , both of

which are fixed by an experiment. The main results reported here are (i) existence of

crossover volume fraction φ β , over which the slow dynamical behavior appears, (ii) three

characteristic stages in the supercooled region φ β # φ < φ g , and (iii) slow dynamics of

long-lived, irregularly shaped glassy domains with Φ ( x , t ) $ φ g  in the supercooled region.

2. THE MODEL EQUATIONS

The causal motion of colloidal suspensions is described by the local volume

fraction Φ ( x , t ) . On the other hand, the dynamics of density fluctuations can be measured

by dynamic light scattering through the intermediate scattering function [9] which is given

by the Fourier transform, F ( k , t ) , of the autocorrelation  function of the density

fluctuations F ( x , t ) = < δ n ( x , t ) δ n ( 0 , 0 ) > / N , where the angular brackets denote the

average over the canonical ensemble, and N  the total number of particles. For scattering

vectors much larger than the maximum position k m  of the structure factor S ( k ) = F ( k , 0 ) ,

the scattering function F ( k , t )  reduces to the self-intermediate scattering function F S ( k , t ) ,

where F S ( k , 0 ) = S ( k ) = 1 . Hence we start with the following coupled diffusion equations

already described elsewhere [5]:
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M 

M t 
Φ ( x , t ) = L A D S ( Φ ( x , t ) ) L Φ ( x , t ) , (1)

M 

M t 
F S ( k , t ) = − k 2 

3 
q 

D S ( k − q , t ) F S ( q , t ) (2)

with the Fourier transform, D S ( k , t ) , of the self-diffusion coefficient

D S ( Φ ( x , t ) ) = 
D S 

S ( φ ) ( 1 − 9 Φ ( x , t ) / 32) 

[ 1 + ( Φ ( x , t ) D S 
S ( φ ) / φ g D 0 ) ( 1 − Φ ( x , t ) / φ g ) 

− 2 ] 
, (3)

and the conservation law ( 1 / V ) I d x   Φ ( x , t ) = φ , where D 0  is the single-particle diffusion

coefficient, D S 
S ( φ )  the short-time self-diffusion coefficient (see Ref. [10] for details), and

V  the total volume of the system. Here the factor (9/32) in the numerator of Eq.(3) results

from the coupling between the direct and the short-range hydrodynamic interactions

among particles, while the second singular term in the denominator originates from the

many-body correlations of long-range hydrodynamic interactions between particles [10].

Equation (1) describes a nonequilibrium transitional behavior from a spatially

inhomogeneous initial state with Φ ( x , 0 )  to an equilibrium state with Φ ( x , 4 ) = φ , while

Eq.(2) describes a linear relaxation of F S ( k , t )  on the nonequilibrium state Φ ( x , t ) . For

short times t n t γ = 2 π / ( k 2 D S 
S ) , D S ( Φ )  reduces to D S 

S ( φ )  since the direct interactions and

the correlations are negligible, while for long times t o t α = 2 π / ( k 2 D L 
S ) , it reduces to the

long-time self-diffusion coefficient D L 
S ( φ ) = D S ( φ )  [10]. In Fig. 1 we plot the theoretical

and experimental results for the normalized self-diffusion coefficient, D S / D 0 , as a

function of the volume fraction φ  for short and long times. A good agreement is indeed

seen between the theoretical results and the experimental data. Thus, there exists a
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crossover from the short-time process described by D S 
S   to the long-time process

described by D L 
S  for intermediate times, where the dynamic singularity,

D S ( Φ ) - ( 1 − Φ ( x , t ) / φ g ) 
2 , becomes important.

3. RESULTS

In order to solve the coupled diffusion equations (1) and (2) self-consistently, we

first fix the values of the two parameters as the initial conditions; the particle volume

fraction φ  and the initial local volume fraction Φ ( x , 0 ) . To integrate those equations, we

employ the forward Euler difference scheme with the time step 0 . 01a 2 
0 / D 0  and the lattice

spacing 0 . 2 a 0  in the volume ( 128a 0 ) 
3  of the three dimensional simulation system with

periodic boundary conditions. In order to distinguish the initial states from each other

qualitatively, it is convenient to introduce a state parameter z 0  by [7]

z 0 = 1 − ( 1 / V ) I d x 1 − Φ ( x , 0 ) / φ . (4)

This parameter measures how close the initial state of the system is to the equilibrium

state, where 0 # z 0 < 1  for a nonequilibrium initial state, and z 0 = 1  for an equilibrium

initial state. The initial value Φ ( x , 0 )  is chosen at each position x  from a random number

with a Gaussian distribution, which is characterized by a mean value 1 and a standard

deviation s , where s  is adjusted so as to satisfy Eq.(4) for a given value z 0 .

As was shown in Refs.[5-7], there are in general three characteristic stages in the

colloidal fluid for 0 < φ < φ g . The first is an early stage [E] for t B n t # t γ , where t B  is the

Brownian relaxation time. The spatial inhomogeneities are described by

Φ ( x , t ) ï exp( − tDS 
S L 

2 ) Φ ( x , 0 ) , and the density fluctuations obeys the short-time
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exponential decay F S 
S ( k , t ) = exp( − k 2 D S 

S t ) , where the system is occupied by the colloidal

fluid with D S 
S . The second is an intermediate stage [I] for t γ n t n t α , where the dynamical

behavior is complicated because of the singularity of D S ( Φ ) . The last is a late stage [L]

for t ³   t α . Φ ( x , t )  becomes homogeneous in space and time, reaching φ , and F S ( k , t ) 

obeys the long-time exponential decay F L 
S ( k , t ) = exp( − k 2 D L 

S t ) , where the system is

occupied by the colloidal fluid with    D  .      L 
     S .

In Fig. 2 we show the time evolution of F S ( k , t )  at z 0 = 0 . 5  and 0.8 for

φ = 0 . 543,   φ β ( z 0 , ka0 ) ,  and 0 . 571, where φ β  is the crossover volume fraction discussed

below. Below φ β , the scattering function F S ( k , t )  decays quickly to zero, while above φ β ,

the shape of F S ( k , t )  becomes very sensitive to the value of φ , forming a shoulder, which

becomes at φ g  a plateau with the height f c 
k ( z 0 ) = lim

t 6 4 

 FS ( k , t ; φ = φ g )  [5-7]. Thus, the

dynamical behavior of the so-called supercooled region (φ β # φ < φ g ) in stage [I] is quite

different from that of the normal region ( 0 < φ < φ β ) . We discuss this next.

In order to see the crossover behavior in stage [I] more clearly, we next calculate

the logarithmic derivatives given by ϕ = M log  f c 
k − F S ( k , t ) / M logt  and ϕ ' = M ϕ / M logt  [5-

7]. Then, ϕ ' = 0  gives two time roots, t b 
0 
( φ , z 0 , k )  and t b ( φ , z 0 , k ) , which reveal two fairly

flat regions; ϕ = b 0 ( φ , z 0 , k )  at t = t b 
0 
 where t γ n t b 

0 
n t β , and ϕ = b ( φ , z 0 , k )  at t = t b  where

t β n t b n t α . Here t β = 2 π / ( k 2 ( D S 
S D L 

S ) 
1 / 2 )  indicates a crossover time and becomes singular

as t β - ( 1 − φ / φ g ) 
− 1  near φ g  since t α - ( 1 − φ / φ g ) 

− 2  [6]. Then, the crossover volume
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fraction φ β ( z 0 , k )  is determined by the equal root t b 
0 
( φ β , z 0 , k ) = t b ( φ β , z 0 , k ) , or

b 0 ( φ β , z 0 , k ) = b ( φ β , z 0 , k ) , at fixed values of z 0  and k  [11]. With increasing volume

fraction at a fixed z 0 , we thus observe a progression from colloidal fluid ( 0 < φ < φ β ) , to

supercooled colloidal fluid ( φ β # φ < φ g ) , to glass ( φ $ φ g )  (see Fig.3). In the supercooled

region, therefore, F S ( k , t )  obeys two kinds of power-law decays with exponents

b 0   and b around t β  [5-7]. Thus, the intermediate stage further separates into two stages.

One is a formation stage [F] for t γ n t n t β . As is seen in Fig. 4, the glassy regions where

Φ ( x , t )  is larger than φ g  form finite-sized, long-lived, irregularly shaped domains.

Because of these domains, the smoothing process of the spatial inhomogeneities to the

uniform state is slowing down, leading to a structural arrest. Hence the density

fluctuations also undergo a slow relaxation and obey the power-law decay

F F 
S ( k , t ) = f c 

k ( z 0 ) − A k ( z 0 ) ( t / t β ) 
b 

0 ,  (5)

where A k = [ f c 
k − F S ( k , t b 

0 
) ] ( t β / t b 

0 
) 

b 
0 . This power-law decay continues up to the crossover

time t β . For t $ t β , the shrinkage stage [Sh] starts, where the glassy domains start to

shrink (see Fig. 4). Since the glassy domains disappear very slowly, the relaxation of the

density fluctuations also becomes slow and obeys the so-called von Schweidler decay

F Sh
S ( k , t ) = f c 

k ( z 0 ) − B k ( z 0 ) ( t / t α ) 
b , (6)

where B k = [ f c 
k − F S ( k , t b ) ] ( t α / t b ) 

b . The power-law decay continues up to the long time

t α , over which the glassy domains disappear. Figure 5 shows schematically the

characteristic stages in the supercooled region. On the other hand, in stage [I] of the

normal region there is neither a formation of finite-sized glassy domains nor a power-law
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decay. Hence the spatial inhomogeneities become smooth monotonicly, obeying Eq.(1),

while the relaxation gradually changes from the short-time exponential decay F S 
S ( k , t )  to

the long-time exponential decay F L 
S ( k , t ) .

4. CONCLUSION

 In conclusion, we have shown that there exists the supercooled region

( φ β # φ < φ g ) , in which the fluid and irregularly shaped glass phases coexist on the time

scale of order t β ( φ , k )  and the slow dynamics occurs. We emphasize that these all

originate from the dynamic singularity of D S ( Φ ) . As is seen in Fig. 3, the supercooled

region becomes wide as z 0  increases, and φ β  is expected to coincide with the melting

volume fraction φ m = 0 . 545 in equilibrium ( z 0 = 1 ) . Finally, we should refer to how the

present theory relates to experiments. By fitting the theoretical plateau height f c 
k ( z 0 )  with

experimental ones at a given value of k , one can calculate the state parameter z 0 

theoretically. Hence one can guess how nonequilibrium the experimental system is

initially. Once the value of z 0  is found, one can thus analyze experimental results in terms

of the present theory for different volume fractions. This will be discussed elsewhere.

This work was supported by the Tohwa Institute for Science, Tohwa University.

References

 [1] W. Götze and L. Sjögren, Phys. Rev. A 43 , 5442 (1991).

 [2] U. Bengtzelius, W. Götze, and A. Sjölander, J. Phys. C 17,  5915 (1984).

 [3] P. N. Pusey and W. van Megen, Nature 320,  340 (1986). 

8



 [4] W. van Megen and S. M. Underwood, Phys. Rev. E 49 , 4206 (1994).

 [5] M. Tokuyama, Physica A 229 , 36 (1996).

 [6] M. Tokuyama, Phys. Rev. E 54 , R1062 (1996).

 [7] M. Tokuyama, Y. Enomoto and I. Oppenheim, Phys. Rev. E 55 , R29, (1997).

 [8] P. N. Pusey, in Liquids, Freezing and the Glass Transition, edited by D. Levesque, 

J. P. Hansen, and J. Zinn-Justin (Elsevier, Amsterdam, 1991).

 [9] B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

[10] M. Tokuyama and I. Oppenheim, Physica A 216 , 85 (1995).

[11] M. Tokuyama, in Dynamics of Glass Transition and Related Topics, edited by T.

Odagaki, Y. Hiwatari and J. Matsui, Prog. Theor. Phys. Suppl., No. 126, 1997.

[12] P. N. Segrè, O. P. Behrend, and P. N. Pusey, Phys. Rev. E 52 , 5070 (1995).

[13] W. Van Megen and S. M. Underwood, J. Chem. Phys. 91 , 552 (1989).

9



Figure Caption:

Figure 1. Normalized self-diffusion coefficient, D S / D 0 , as a function of volume

fraction φ . The dotted line indicates the short-time self diffusion coefficient 

D S 
S , and the solid line the long-time self-diffusion coefficient D L 

S . Shown are

also the data from Ref.[12] (®), and Ref.[13] (m).

Figure 2: Self intermediate scattering function F S ( k , t )  versus dimensionless time 

D 0 t / a 2 
0  for different volume fractions (from left to right): 0.543, φ β ( z 0 , ka0 ) 

and 0.571 at z 0 = 0 . 8  (solid lines) and 0.5 (dotted lines), where φ β ( 0 . 8 , 3 . 42) 

=0.5591 and φ β ( 0 . 5 , 3 . 42) =0.5648. The symbols indicate the time scales;

t γ  (♦), t β  (m), and t α  (◊ ).

Figure 3. Schematic phase diagram in the φ − z 0  plane for hard-sphere suspensions.

The solid circles indicate the crossover volume fraction φ β , and the dotted line

the glass transition volume fraction φ g .

Figure 4. Typical configurations, projected onto a plane, of pattern-evolution processes

at φ = 0 . 571 and z 0 = 0 . 8  in the supercooled region φ β # φ < φ g  for 

dimensionless times (a) 1, (b) 6 . 35( t γ ) , (c) 102 , (d) 103 , (e) 1279( t β ) ,

(f) 104 , (g) 105 , (h) 4 . 4 H 105 ( t α ) , and (i) 106 . The system size is ( 128a 0 ) 
2 ,

and the glassy regions are colored black.

Figure 5. Characteristic stages in the supercooled region φ β # φ < φ g  at z 0 = 0 . 8  and  

ka0 = 3 . 42. The dot-dashed line indicates the characteristic time t γ , the solid

line t β , and the dotted line t α .
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